2 research outputs found

    Design of a High Speed Clutch with Mechanical Pulse-Width Control

    Get PDF
    Kinetic energy storage via flywheels is an emerging avenue for hybrid vehicle research, offering both high energy and power density compared to more established electric and hydraulic alternatives. However, connecting the high speed flywheel to the relatively low speed drivetrain of the vehicle is a persistent challenge, requiring a transmission with high variability and efficiency. A proposed solution drawing inspiration from the electrical domain is the Switch-Mode Continuously Variable Transmission (SM CVT), which uses a high speed clutch to transfer energy to a torsion spring in discrete pulses with a variable duty cycle. The greatest limitation to the performance of this system is the speed and efficiency of commercial clutch technology. It is the goal of this thesis to develop a novel clutch which meets the actuation speed, controllability, and efficiency requirements of the SM CVT, with potential for reapplication in other rotary mechanical systems with switching functionality. The performance demands of the clutch were derived via a theoretical design case based on the performance requirements of a typical passenger vehicle, indicating the need for a sub-millisecond engagement and disengagement cycle. This is not met by any conventional clutch. Several concepts were considered across the fluid, electromagnetic and mechanical energy domains. A final concept was chosen which employs a friction disk style architecture, with normal force produced by compressing springs via an axial cam mounted to the flywheel. To control duty cycle, the cam was designed with a radially varying profile such that increasing radial position results in proportionally increasing ratio of high dwell to low dwell. Three synchronized followers are then translated radially on the cam by a control linkage. Analysis of the follower train dynamics and system stiffness were carried out to inform the design of a scaled benchtop prototype. Experimental testing was carried out to characterize the performance of the prototype. It was found that the intended functionality of the design was achieved, with discrete energy transfer accomplished via pulsing of the clutch. However, maximum efficiency was only 33% and torque capacity was only 65% of the intended 70Nm. Significant opportunity exists for improvement of the clutch performance in future research

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    corecore